Les fluorures $Sr_2M^{II}M^{III}F_9$ ($M^{II}=Mg$, Mn, Fe, Co, Ni, Zn; $M^{III}=Al$, Cr, Fe, Ga)

K. Taibi, L. Benziada

Laboratoire de Cristallographie Appliquée, Institut de Chimie, U.S.T.H.B., Alger (Algérie)

J. Grannec et J. Ravez

Laboratoire de Chimie du Solide du C.N.R.S., Université Bordeaux I, 33405 Talence-Cedex (France)

(Reçu le 2 juillet 1991; accepté le 18 septembre 1991)

Abstract

New compounds, $Sr_2M^mM^mF_9$ ($M^m=Mg$, Mn, Fe, Co, Ni, Zn; $M^m=Al$, Cr, Fe, Ga), have been prepared. X-ray diffraction studies show the compounds to be isostructural and to crystallise with tetragonal symmetry. The parameters of the unit cell have been determined at room temperature and related to the size of the various M^{2+} and M^{3+} cations.

Résumé

De nouveaux composés de formule $Sr_2M^IIM^{III}F_9$ ($M^{II}=Mg$, Mn, Fe, Co, Ni, Zn; $M^{III}=Al$, Cr, Fe, Ga) ont été mis en évidence. Une étude radiocristallographique sur poudre a montré que ces phases sont isotypes et cristallisent avec une symétrie quadratique. Les paramètres de la maille élémentaire ont été déterminés à température ambiante et reliés à la taille des divers cations M^{2+} et M^{3+} .

Introduction

L'étude des fluorures ternaires des métaux alcalino-terreux (Sr, Ba) ou du plomb et d'éléments trivalents avait permis de mettre en évidence plusieurs familles de nombreux composés de symétrie quadratique et de stoechiométries différentes AMF_5 , $A_3M_2F_{12}$ et $A_5M_3F_{19}$ (A=Sr, Ba, Pb; M=Al, Sc, Ti, V, Cr, Fe, Co, Ga, In) [1, 2]. La structure des phases AMF_5 avait été déterminée à partir de monocristaux de $SrAlF_5$, de $BaFeF_5$ et de $BaTiF_5$: elle est composée d'octaèdres MF_6 liés soit par des arêtes, soit par des sommets donnant ainsi naissance à des chaînes simples ou ramifiées qui se développent selon l'axe Oz [3, 4]. La disparition des chaînes ramifiées laisse apparaître des canaux dont l'occupation par des files de cations A^{2+} conduit aux composés $A_3M_2F_{12}$ ou $A_5M_3F_{19}[5-7]$.

L'étude des systèmes MF_2 – FeF_2 – FeF_3 avait montré par ailleurs l'existence d'un composé $Sr_2M^IM^{II}F_9$ de structure également corrélée à celle des phases

AMF₅; ici le passage de la formulation AMF₅ ($A_{64}M_{64}F_{320}$, Z=64) à celle de $A_2M^{II}M^{III}F_9$ ($A_{64}M^{II}_{32}M^{III}_{32}F_{288}$, z=32) s'effectue par disparition de 32 atomes de fluor. Une solution solide très étendue existe d'ailleurs entre BaFeF₅ et Sr₂Fe₂F₉ [8]. Plus récemment de nombreuses phases de type Sr₂Fe₂F₉ mais contenant du baryum ($Ba_2M^{II}M^{III}F_9$) ont été également isolées [9–13].

D'autre part, l'examen de la structure des phases AMF_5 , $A_3M_2F_{12}$ et $A_5M_3F_{19}$ avait permis de prédire la présence de propriétés ferroélectriques à température ambiante sur la base des déplacements atomiques des cations M^{3+} au sein des octaèdres fluorés. Des travaux récents ont été effectués en utilisant diverses techniques (diffraction X en température, micro-calorimétrie, mesures diélectriques et optiques) tant sur céramique que sur monocristal: il existe effectivement une transition de phases probablement ferroélectrique—paraélectrique pour la plupart de ces composés. Des études systématiques ont permis de relier la valeur de la température de transition à la taille des divers cations en présence dans les familles correspondantes [14–18]. Comme pour la structure de type perovskite, l'augmentation de taille des cations A^{2+} (A=Sr, Ba) ou la diminution de celle des ions M^{3+} provoque une élévation de la température de transition [19]; ce résultat est certainement corrélé d'une part à un effet stérique et d'autre part à un effet de liaison chimique [20].

Il nous a paru intéressant de créer une nouvelle famille de composés contenant du strontium et de type $Sr_2Fe_2F_9$. Leurs propriétés pourront ensuite être étudiées en vue de se pencher sur le nouveau cas de deux cations M^{2+} et M^{3+} de charges différentes en site octaédrique. Les composés $Sr_2M^{II}M^{III}F_9$ envisagés ici comportent les éléments $M^{II}=Mg$, Mn, Fe, Co, Ni, Zn et $M^{III}=Al$, Cr, Fe, Ga. Ce travail s'inscrit dans le cadre des études sur les matériaux ferroélectriques fluorés ou oxyfluorés [21, 22].

Préparation

 $\rm MgF_2,\,MnF_2,\,ZnF_2$ et $\rm SrF_2$ sont des produits commerciaux titrant 99,9%. Les deux fluorures $\rm MnF_2$ et $\rm SrF_2$ subissent uniquement un dégazage sous vide dynamique à 150 °C, tandis que $\rm MgF_2$ et $\rm ZnF_2$ sont traités au préalable sous fluor à 500 °C.

 FeF_2 , NiF_2 , CoF_2 et CrF_3 sont préparés à partir des chlorures anhydres correspondants, en nacelle d'or, sous courant de fluorure d'hydrogène à 600 °C; la réaction a lieu à 400 °C dans le cas de FeF_3 .

 AlF_3 et GaF_3 sont obtenus après chauffage à 200–400 °C en creuset de platine d'un mélange de NH_4HF_2 en excès et des oxydes correspondants, suivi d'un traitement sous courant de HF à 600 °C.

Les fluorures $Sr_2M^IM^{II}F_9$ sont obtenus selon le schéma réactionnel suivant: $2SrF_2 + MF_2 + MF_3 \xrightarrow{650 \text{ °C}} Sr_2M^IM^{III}F_9$

Les mélanges et broyages des produits de départ sont effectués en boîte à gants sèche; le mélange est alors introduit dans un tube d'or ou de platine,

scellé sous hélium sec après un dégazage sous vide dynamique à $150~^{\circ}$ C durant 4 h. La réaction est effectuée pendant 15~h à $650~^{\circ}$ C. Des recuits entre 650 et $700~^{\circ}$ C sont réalisés lorsque les phases obtenues ne sont pas encore totalement pures.

Analyse radiocristallographique à température ambiante

Le spectre de diffraction X sur poudre, à température ambiante, des phases obtenues s'indexe dans le système quadratique par isotypie avec $Sr_2Fe_2F_9$ et par analogie avec $BaFeF_5$. Les paramètres de la maille cristalline sont affinés par la méthode des moindres carrés. Les données radiocristallographiques sont rassemblées dans le Tableau 1. Dans certains cas, malgré de nombreux recuits et l'utilisation de conditions de préparation variées (température, temps, vitesse de refroidissement), quelques raies d'impuretés subsistent au côté de celles de la phase $Sr_2M^{II}M^{III}F_9$ (Tableau 1). Lorsque la taille des cations M^{2+} et M^{3+} croît, le paramètre augmente alors que le paramètre c diminue ou demeure pratiquement constant (Tableau 1).

En vue de s'assurer de la formulation de ces phases, des mesures de masses volumiques ont été réalisées à température ambiante par une méthode pycnométrique utilisant le tétrachlorure de carbone. A titre d'exemple, le Tableau 2 donne les résultats obtenus pour quatre d'entre elles. Les valeurs expérimentales et calculées sont en bon accord pour un nombre de groupements formulaires Z=32.

TABLEAU 1 Paramètres cristallins des phases $Sr_2M^{11}M^{111}F_9$ à température ambiante

	$a~(\pm 0{,}008~{ m \AA})$	$c~(\pm 0{,}005~{ m \AA})$	c/a	V (Å ³)
Sr ₂ MgAlF ₉	19,850	14,358	0,723	5657
Sr ₂ MnAlF ₉ ^a	20,182	14,163	0,702	5769
Sr ₂ NiAlF ₉	19,688	14,375	0,730	5572
Sr ₂ ZnAlF ₉ ^a	19,913	14,298	0,718	5670
Sr ₂ MgCrF ₉	19,923	14,522	0,729	5764
Sr ₂ FeCrF ₉ ^a	20,040	14,541	0,726	5840
Sr ₂ CoCrF ₉ ^a	20,055	14,489	0,722	5828
Sr ₂ MnFeF ₉	20,068	14,586	0,727	5874
Sr ₂ FeFeF ₉	19,827	14,577	0,735	5730
Sr ₂ CoFeF ₉	19,780	14,581	0,737	5705
Sr ₂ ZnFeF ₉ ^a	19,761	14,579	0,738	5693
Sr ₂ MgGaF ₉	19,973	14,551	0,729	5805
Sr ₂ MnGaF ₉	20,085	14,535	0,724	5863
Sr ₂ FeGaF ₉	20,064	14,521	0,724	5846
Sr ₂ ZnGaF ₉	20,040	14,522	0,725	5832

^aQuelques raies d'impuretés subsistent dans le spectre de diffraction X au côté de celles de la phase $Sr_2M^{II}M^{III}F_9$.

TABLEAU 2 Masses volumiques de quelques composés $Sr_2M^{II}M^{III}F_9$

	Sr ₂ NiAlF ₉	Sr ₂ MgCrF ₉	$\mathrm{Sr}_{2}\mathrm{MnFeF}_{9}$	Sr ₂ ZnGaF ₉
$\rho_{\rm exp.} \pm 0.05 \ ({\rm g \ cm^{-3}})$	4,07	3,86	3,97	4,14
$\rho_{\rm calc.}$ (g cm ⁻³)	4,118	3,895	4,171	4,382

TABLEAU 3 Variation du rapport c/a avec la taille du cation M^{2+} en coordinence 6 pour les composés $Sr_2M^{II}M^{II}F_9$ préparés [23]

M	Ni	Mg	Zn	Co	Fe	Mn
$T_{M^{2+}}$ (Å)	0,690	0,720	0,740	0,745	0,780	0,830
Rapport c/a						
$Sr_2M^{II}AlF_9$	0,730	0,723	0,718			0,702
Sr ₂ M ^{II} CrF ₉		0,729		0,722	0,726	
$Sr_2M^{II}FeF_9$			0,738	0,737	0,735	0,727
Sr ₂ M ^{II} GaF ₉		0,729	0,725	,	0,724	0,724

Discussion

Ce travail a permis de mettre en évidence de nouvelles phases de formule Sr₂M^{II}M^{III}F₉ et isotypes de Sr₂Fe^{II}Fe^{III}F₉. Si la plupart ont pu être isolées, en revanche pour certaines d'entre elles quelques impuretés subsistent malgré plusieurs recuits. Toutes ces phases cristallisent dans le système quadratique. Le volume de la maille élémentaire augmente avec la taille des cations M²⁺ ou M^{3+} localisés dans les octaèdres. Le rapport c/a diminue de manière générale avec la taille des cations M^{2+} (Tableau 3); ce rapport semble varier apparemment en sens inverse, mais de manière moins régulière, avec la taille des cations M³⁺. Ce sont les ions M²⁺ qui paraissent ici plus directement responsables de la distortion structurale en raison de leur taille plus forte. Par analogie avec une étude systématique réalisée sur des composés A₅M₃F₁₉, cette variation implique que la transition éventuelle entre une phase comprenant des octaèdres distordus par un allongement selon Oz (phase basse température) et celle possédant un réseau d'octaèdres plus réguliers (phase haute température) se produise à température d'autant plus basse que la taille des cations en site octaédrique est plus élevée [24]. Ce résultat suggère l'existence possible de propriétés ferroélectriques. En effet, les ions se déplacent d'autant plus difficilement d'une longueur Δz hors du centre de gravité de l'octaè dre qu'ils sont plus volumineux, d'où une chute de T_c en accord avec la loi empirique annoncée par Abrahams et al. $T_c(K) = 2 \times 10^4 (\Delta z)^2$ (Å) [25].

L'étude des transitions de phases ainsi qu'une détermination structurale sur monocristal sont en cours; elles permettront d'étayer l'ensemble de ces hypothèses.

References

- 1 J. Ravez, J. Viollet, R. de Pape et P. Hagenmuller, Bull. Soc. Chim. Fr., 4 (1967) 1325.
- 2 J. Ravez, R. Von der Mühll et P. Hagenmuller, J. Solid State Chem., 14 (1975) 20.
- 3 R. Von der Mühll, S. Andersson et J. Galv. Acta Crustallogr., B27 (1971) 2345.
- 4 S. M. Eicher et J. E. Greedan, J. Solid State Chem., 52 (1984) 12.
- 5 R. Von der Mühll, C. R. Acad. Sci., 278 (1974) 713.
- 6 C. Jacoboni, A. Le Bail, R. de Pape et J. P. Renard, Stud. Inorg. Chem., 3 (1983) 687.
- 7 S. C. Abrahams, J. Albertsson, C. Svensson et J. Ravez, Acta Crystallogr., B45 (1990) 497.
- 8 J. Ravez, R. de Pape et P. Hagenmuller, Bull. Soc. Chim. Fr., 11 (1967) 4375.
- 9 A. de Kozak et M. Samouël, Rev. Chim. Minér., 14 (1977) 553.
- 10 M. Samouël et A. de Kozak, Rev. Chim. Minér., 15 (1978) 268.
- 11 A. de Kozak et M. Samouël, Rev. Chim. Minér., 15 (1978) 406.
- 12 A. de Kozak et M. Samouël, Rev. Chim. Minér., 18 (1981) 255.
- 13 T. Fleischer et R. Hoppe, Z. anorg. allg. Chem., 493 (1982) 59.
- 14 J. Ravez, S. C. Abrahams, J. P. Chaminade, A. Simon, J. Grannec et P. Hagenmuller, Ferroelectrics, 38 (1981) 773.
- 15 J. Ravez, V. Andriamampianina, A. Simon, J. Grannec et S. C. Abrahams, Ferroelectrics, 109 (1990) 33.
- 16 S. Arquis-Canouet, J. Ravez et S. C. Abrahams, J. Appl. Crystallogr., 19 (1986) 374.
- 17 J. Ravez, S. Arquis-Canouet, J. Grannec, A. Simon et S. C. Abrahams, J. Appl. Phys., 62 (1987) 4299.
- 18 J. Ravez, A. Simon, V. Andriamampianina, J. Grannec, P. Hagenmuller et S. C. Abrahams, J. Appl. Phys., 68 (1990) 3529.
- 19 Ferroelectrics and Related Substances, Landolt-Börnstein III, Vol. 16, Springer Verlag, Berlin, 1981.
- 20 J. Ravez, Phase Transition, 33 (1991) 53.
- 21 J. Ravez, Inorganic Solid Fluorides, Academic Press, New York, 1985, p. 469.
- 22 J. Ravez, Rev. Chim. Minér., 23 (1986) 460.
- 23 R. D. Shannon, Acta Crystallogr., A32 (1976) 751.
- 24 J. Ravez, V. Andriamampianina, A. Simon, J. Grannec et S. C. Abrahams, J. Appl. Phys., 70 (1991) 1331.
- 25 S. C. Abrahams, S. Kurtz et P. B. Jamieson, Phys. Rev., 172 (1968) 551.